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HyperKähler and quaternionic Kähler manifolds with S1-symmetries
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Abstract

We study relations between quaternionic Riemannian manifolds admitting different types of symmetries. We show that
any hyperKähler manifold admitting hyperKähler potential and triholomorphic action of S1 can be constructed from another
hyperKähler manifold (of lower dimension) with an action of S1 that fixes one complex structure and rotates the other two and
vice versa. We also study the corresponding quaternionic Kähler manifolds equipped with a quaternionic Kähler action of the
circle. In particular we show that any positive quaternionic Kähler manifolds with S1-symmetry admits a Kähler metric on an open
everywhere dense subset.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a short Berger’s list [3] of groups that can occur as holonomy group of locally irreducible Riemannian manifold
are in particular Sp(n) and Sp(n)Sp(1), the first being a holonomy group of hyperKähler manifold while the second a
quaternionic Kähler one. In other words, a Riemannian manifold (M, g) is hyperKähler if it admits three covariantly
constant complex structures Ir , r = 1, 2, 3 with quaternionic relations

I 2
r = −id, I1 I2 = −I2 I1 = I3,

compatible with the Riemannian structure: g(Ir ·, Ir ·) = g(·, ·). Hitchin [13] proved the following criteria of
integrability of complex structures: Ir are covariantly constant if and only if 2-forms ωr (·, ·) = g(·, Ir ·) are symplectic
(i.e. closed). It is convenient to consider all three symplectic forms as a single 2-form with values in imaginary
quaternions:

ω = ω1i + ω2 j + ω3k.

In contrast to hyperKähler manifolds, a quaternionic Kähler manifold N admits almost complex structures (and
correspondingly 2-forms ωr ) only locally. Nevertheless the 4-form Ω = w1 ∧ ω1 + w2 ∧ ω2 + w3 ∧ ω3, called the
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fundamental 4-form, exists globally and determines the quaternionic Kähler structure. In this case the integrability
means that the fundamental 4-form is covariantly constant and this is equivalent to dΩ = 0 provided dim N ≥ 12. In
dimension 4 quaternionic Kähler by definition means Einstein and self-dual.

An important link between hyperKähler and quaternionic Kähler geometries provides the Swann construction [18].
Suppose that the group SU (2) ∼= Sp(1) = {q ∈ H | |q| = 1} acts on M isometrically and permutes complex
structures:

Lζω = [ζ, ω] ⇔
(
Lq
)∗
ω = qωq̄, (1)

where ζ ∈ Im H ∼= sp(1). We also say, that the action of Sp(1) with the above property is permuting. Swann shows
that such an action can be extended to homothetic action of the whole H∗

= R∗
+ × Sp(1) if the vector field I YI is

independent of a complex structure I , where YI is a Killing vector field of S1
⊂ Sp(1)which preserves I . In particular

I1Y1 = I2Y2 = I3Y3 = −Y0, (2)

where we put Yr = YIr for short and a vector field Y0 generates homothetic action of R∗
+ ⊂ H∗

: (Lr )
∗ g = r2g. We

will also call such an H∗-action permuting. Under these circumstances N = M/H∗ has positive scalar curvature and
carries a quaternionic Kähler structure. On the other hand, for any quaternionic Kähler manifold N with positive scalar
curvature Swann constructs a hyperKähler manifold U(N ) which enjoys the permuting action of H∗. Such manifolds
are also distinguished by the property of carrying a hyperKähler potential, i.e. function ρ : M → R which is the
Kähler potential simultaneously for each complex structure.

In this paper we study the influence of S1-symmetry on relations between different types of quaternionic
Riemannian geometries. We consider the hyperKähler manifolds M with the hyperKähler potential and additional
triholomorphic and isometric action of S1 and show that such manifolds can be reconstructed from their hyperKähler
reductions M̃ with respect to a nonzero value of momentum map. The main result of this paper is Theorem 3 which
describes M as the total space of a certain fibre bundle with the fibre H∗. Moreover, the hyperKähler structure
is described quite explicitly which allows to obtain not only existence results but metric and symplectic forms
themselves. Dividing such manifolds by H∗ as described in [18] we obtain quaternionic Kähler manifolds with S1-
symmetry (Theorem 7). In Section 4 we describe new examples of hyper- and quaternionic-Kahler manifolds making
use of a certain freedom in choice of the parameters of construction.

We also show in Theorem 14 that positive quaternionic Kähler manifold N with S1-symmetry admits a Kähler
structure on an open everywhere dense submanifold. The complex structure is a section of the structure bundle of N ,
however the Kähler metric is different from the quaternionic Kähler one.

2. S1-symmetry

Let M be a hyperKähler manifold with H∗-action permuting complex structures. Suppose also that M admits a
hyperKähler action of S1 (which we prefer to denote as S1

0 in order to distinguish this group from another one, which
will appear later and is also isomorphic to S1) with momentum map µ : M → Im H,

dµ = − ıK0 ω,

where K0 is the Killing vector field of S1
0 . We also assume that these two actions commute and thatµ is H∗-equivariant:

µ ◦ Lx = xµx̄, x ∈ H∗. (3)

Fix an imaginary quaternion, say i , and consider the corresponding level set P = µ−1(i). Since xm = Lx m ∈

µ−1(xi x̄) and H∗ acts transitively on Im H \ {0} the map

f : H∗
× P → M \ µ−1(0), (x,m) 7→ xm, (4)

is surjective. Notice that

M0 = M \ µ−1(0)

is open and everywhere dense submanifold of M .
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However the map f is not injective. Indeed µ−1(i) = P inherits action of Stabi = S1
⊂ H∗ (to which we now

give a label S1
r ) and it follows that points (x,m) and (xz, z̄m), z ∈ S1

r are mapped into the same point xm in M0.
Thus the manifold M0 can be described as H∗

×S1
r

P . Now the challenge is to express the hyperKähler structure of
M0 in terms of its “components” H∗ and P .

While the first “component” H∗ is very simple, the second one needs to be understood more deeply for the future
purposes.

2.1. Induced structure on P

It follows from H∗-equivariancy of µ that each nonzero imaginary quaternion is a regular value of µ. Assuming
that S1

0 acts freely on P , we see that M̃ := P/S1
0 is just a hyperKähler reduction of M and therefore is itself a

hyperKähler manifold. Thus P can be thought of as S1
0 -principal bundle over M̃ . Moreover it gets equipped with a

connection,1namely

ξ(·) = vg(K0, ·) ∈ Ω1(P),

where v−1
= g(K0, K0), v : M̃ → R>0. Notice that the induced metric g̃ on M̃ , the connection ξ and the function v

together determine the metric on P since T. P ∼= RK0 ⊕ T. M̃ :

gP = g̃ + v−1ξ2. (5)

The connection ξ defines a horizontal lift û ∈ T P of a tangent vector u ∈ T M̃ .
As we have already remarked P inherits the action of S1

r , which descends to M̃ . The latter action has a nice property
(inherited from M) of fixing complex structure I1 and rotating the plane spanned by I2 and I3. Denote by Kr a Killing
vector field of S1

r -action on M̃ and by w the squared norm of Kr :

w : M̃ → R>0, w = ‖Kr‖
2.

Below we will also use a quaternion-valued 1-form η generated by Kr :

η = ıKr g̃ + ıKr ω̃ ∈ Ω1(M̃; H). (6)

Further, recall that Y1 is the Killing vector field of the S1
r -action on P . Then Y1 and Kr are related as follows. First

observe that T. M = T. P ⊕ RI1 K0 ⊕ RI2 K0 ⊕ RI3 K0 and one also has

T. P = Kerµ∗, µ∗ I1 K0 = v−1i, µ∗ I2 K0 = v−1 j and µ∗ I3 K0 = v−1k.

Now taking x = exp(i t) in formula (3) and differentiating with respect to t one obtains that the formula Y1 = K̂r +aK0
holds on P . The same argument gives that µ∗Y0 = 2i or in other words Y0 = Ŷ ′

+ bK0 + 2v I1 K0. It follows from
the equation I1Y0 = Y1 that Y ′

= −I1 Kr , b = 0, a = −2v. Summing up we obtain

Y0 = −I1 K̂r − 2v I1 K0, Y1 = K̂r + 2vK0,

Y2 = I3 K̂r + 2v I3 K0, Y3 = −I2 K̂r − 2v I2 K0.
(7)

Remark 1. Since actions of S1
0 and S1

r ⊂ H∗ commute, it follows that the connection ξ enjoys additional property
of being S1

r invariant. On infinitesimal level this means that 0 = LY1ξ = ıY1 dξ + d ıY1 ξ = ıKr Fξ + 2dv, where
Fξ ∈ Ω1(M̃) denotes the curvature form of ξ . Thus, invariance of ξ with respect to action of S1

r on P is equivalent to

ıKr Fξ + 2dv = 0. (8)

Note also that the function v is S1
r -invariant by the same reason.

1 Notice that we identify the Lie algebra of S1 with R, not with iR.
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2.2. Metric

Since M is a Riemannian manifold the map f , defined by (4), induces a metric f ∗g on H∗
× P . Notice that since

f is not injective, this metric degenerates on tangent vectors to fibres. Our next aim is to calculate f ∗g explicitly in
terms of tensors on H∗ and M̃ as well as connection ξ and function v.

Let (x,m) ∈ H∗
× P and (h1, v1), (h2, v2) ∈ TxH∗

× Tm P . Put also α = x−1h1, β = x−1h2 ∈ T1H∗ and denote
by Yα and Yβ the Killing vector fields of H∗-action at the point m corresponding to the Lie algebra elements α and β.
Obviously (Y1,Yi ,Y j ,Yk) = (Y0, Y1, Y2, Y3). Further, one has

f ∗g ((h1, v1), (h2, v2)) = g
(
(Lx )∗ (Yα + v1) , (Lx )∗

(
Yβ + v2

))
= |x |

2g
(
Yα + v1,Yβ + v2

)
.

Thus we see that essentially the following three terms have to be computed: g
(
Yα,Yβ

)
, g (Yα, v) and g (v1, v2).

The first term. Since relation (2) holds, we get

g
(
Yα,Yβ

)
= g

(
3∑

r=0

αr Yr ,

3∑
r=0

βr Yr

)
= g (Y0, Y0)Re

(
αβ̄
)
.

Recall thatw denotes the squared norm of Kr and therefore it follows from (7) that g(Y0, Y0) = w+4v2v−1
= 4v+w.

So finally we have

g
(
Yα,Yβ

)
= (4v + w)Re

(
αβ̄
)
.

The second term. First decompose v into horizontal and vertical parts: v = v̂′
+ξ(v)K0. Taking into account formulae

(7) again, one obtains

g(Yβ , v) = g
(
Yβ , v′

)
+ 2β1ξ(v)

= g̃
(
−β0 I1 Kr + β1 Kr + β2 I3 Kr − β3 I2 Kr , v′

)
+ 2β1ξ(v)

= β0ω̃1(Kr , v′)+ β1g̃(Kr , v′)− β2ω̃3(Kr , v′)+ β3ω̃2(Kr , v′)+ 2β1ξ(v).

Slightly abusing notations, we also use the letter η for the pull-back of the form (6) to P . Then the above formula can
be written in a more compact form:

g ((Rm)∗ β, v) = −Re (2βiξ(v)+ βiη(v)) .

The third term. This has been already computed and is given by (5).

Remark 2. Below we follow conventions of [11]. In particular, if ζ1 and ζ2 are (quaternion-valued) 1-forms, then

(ζ1 � ζ2) (v1, v2) = ζ1(v1)ζ2(v2)+ ζ1(v2)ζ2(v1),

(ζ1 ∧ ζ2) (v1, v2) = ζ1(v1)ζ2(v2)− ζ1(v2)ζ2(v1).

Now, recalling that α and β contain shift by x−1
= x̄/|x |

2 we obtain a final form of the metric:

f ∗g = (4v + w)Re dx ⊗ dx̄ − Re (x̄dxi � (2ξ + η))+ |x |
2
(

g̃ + v−1ξ2
)
. (9)

2.3. Symplectic forms

In this section we will describe symplectic forms in a similar manner as we did with the metric above.
The pull-back of ω can be written as

f ∗ω((h1, v1), (h2, v2)) = ω
(
(Lx )∗ (Yα + v1) , (Lx )∗

(
Yβ + v2

))
= xω

(
Yα + v1,Yβ + v2

)
x̄,
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where α and β are the same as in Section 2.2. Therefore we have to compute three terms analogous to those, which
appear in the metric computation.

The first term. The computation is similar to the one above:

ω(Yα,Yβ) = ig (α0Y0 + α1Y1 + α2Y2 + α3Y3, β0Y1 − β1Y0 + β2Y3 − β3Y2)

+ jg (α0Y0 + α1Y1 + α2Y2 + α3Y3, β0Y2 − β1Y3 − β2Y0 + β3Y1)

+ kg (α0Y0 + α1Y1 + α2Y2 + α3Y3, β0Y3 + β1Y2 − β2Y1 − β3Y0)

= g(Y0, Y0) (i (−α0β1 + α1β0 − α2β3 + α3β2)

+ j (−α0β2 + α2β0 + α1β3 − α3β1)+ k (−α0β3 + α3β0 − α1β2 + α2β1))

= (4v + w)Im
(
αβ̄
)
.

The second term. Decomposing v into horizontal v̂′ and vertical ξ(v)K0 parts one obtains:

ω (Yα, v) = i
(
−2α0ξ(v)+ ω1

(
(Rm)∗ α, v̂′

))
+ j

(
−2α3ξ(v)+ ω2

(
(Rm)∗ α, v̂′

))
+ k

(
−2α2ξ(v)+ ω3

(
(Rm)∗ α, v̂′

))
= i

(
−2α0ξ(v)− α0g̃(Kr , v′)+ α1ω̃1(Kr , v′)− α2ω̃2(Kr , v′)− α3ω̃3(Kr , v′)

)
+ j

(
−2α3ξ(v)+ α0ω̃3(Kr , v′)+ α1ω̃2(Kr , v′)+ α2ω̃1(Kr , v′)− α3g̃(Kr , v′)

)
+ k

(
−2α2ξ(v)− α0ω̃2(Kr , v′)+ α1ω̃3(Kr , v′)+ α2g̃(Kr , v′)+ α3ω̃1(Kr , v′)

)
= −2 Im (αi) ξ(v)− Im (αiη(v)) .

The third term. It is easy to see that

ω(v1, v2) = ω(v′

1, v′

2) = ω̃(v1, v2),

where the pull-back is also implied.
Thus, recalling that α = x−1h1 = |x |

−2 x̄h1, the Im H-valued form ϕ = f ∗ω can be written as

ϕ =
4v + w

2
dx ∧ dx̄ + xω̃x̄ − 2 Im (dxi x̄) ∧ ξ − Im (dxi ∧ ηx̄) . (10)

2.4. Inverse construction

Now we can look on the above considerations in reverse order in the following sense. Suppose M̃ is a hyperKähler
manifold with metric g̃ and hyperKähler structure ω̃. Further, a group S1

r acts on M̃ preserving complex structure I1
and rotating I2 and I3 in the sense (L z)

∗ ω̃ = zω̃z̄, z ∈ S1
r . Pick an S1

0 -principal bundle P with a connection ξ and
extend the action of S1

r to P such that it commutes with S1
0 (at least locally such extension always exists).

Consider further a manifold M0 = H∗
×S1

r
P . We would like to define a metric g and hyperKähler structure ω on

M0 such that their pull-backs to H∗
× P are given by formulae (9) and (10) respectively. The first thing to show is that

these expressions define invariant and basic tensors on H∗
× P . One can easily check that both tensors are invariant

provided ξ is S1
r -invariant (see also Remark 5). Let χ be a Killing vector field of the S1

r -action on H∗
× P . It follows

that χ = K ∗
−Y1, where K ∗ is a Killing vector field of the S1

r -action on H∗ by right multiplication, i.e. dx(K ∗) = xi .
Then the equalities ıχ g = 0, ıχ ϕ = 0 can be checked directly. For example, the last one follows from the following
computation:(

ıχ ϕ
)
(α, v) =

1
2
(4v + w)

(
xi ᾱ − αxi

)
− xω̃ (Kr , v) x̄

− 2 Im (xii x̄ξ (v)+ αi x̄ 2v)− Im (xiiη (v) x̄ + αiη (Kr ) x̄)

= (4v + w)Im (xi ᾱ)− xω̃ (Kr , v) x̄ − 2 · 0

− 4vIm (xi ᾱ)+ xω̃ (Kr , v) x̄ − wIm xi ᾱ

= 0.
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The next question is whether the 2-form ω ∈ Ω2(M0; Im H) is closed. As we have seen, the pull-back ϕ of ω to
H∗

× P is basic and therefore this is equivalent to ϕ being closed. Now dϕ is a quaternion-valued 3-form on H∗
× P

and by the Künneth formula Ω3(H∗
× P; Im H) ∼=

⊕3
l=0 Ω l(H∗

; Im H)⊗ Ω3−l(P; Im H). Thus dϕ decomposes in
4 components: dϕ =

∑3
l=0(dϕ)(l,3−l), (dϕ)(l,3−l) ∈ Ω l(H∗

; Im H)⊗ Ω3−l(P; Im H). It is easy to see that (dϕ)(0,3)
and (dϕ)(3,0) vanish identically and it remains to compute the remaining two components of dϕ.

It follows directly from the expression for ϕ that

(dϕ)(1,2) = dx ∧ ω̃x̄ + xω̃ ∧ dx̄ + 2 Im (dxi x̄) ∧ Fξ + Im (dxi ∧ dηx̄)

= Im
(
dx ∧

(
2ω̃ + 2i Fξ + idη

)
x̄
)

and this vanishes iff

−2iω̃ + 2Fξ + dη = 0.

By the Cartan formula [i, ω̃] = LKr ω̃ = d
(
ıKr ω̃

)
. But then the above equation can be rewritten as 2Fξ =

−d
(
ıKr g̃

)
− d

(
ıKr ω̃

)
+ 2iω̃ = −d

(
ıKr g̃

)
− 2ω̃1. Thus the vanishing of (dϕ)(1,2) is equivalent to

Fξ = −
1
2

d
(
ıKr g̃

)
− ω̃1. (11)

For the other nontrivial component of dϕ one obtains

(dϕ)(2,1) =
1
2
(4dv + dw) ∧ dx ∧ dx̄ + 2 Im (dxi ∧ dx̄) ∧ ξ − Im (dxi ∧ η ∧ dx̄)

=
1
2

Im (dx ∧ (− (4dv + dw)− 4iξ − 2iη) ∧ dx̄) .

Suppose θ is a quaternion-valued 1-form on M̃ and consider the equation Im (dx ∧ θ ∧ dx̄) = 0 on H∗
× M̃ ,

which turns out to be equivalent to Re θ = 0. Indeed, dx ∧ θ ∧ dx̄ = − (Re θ)∧ dx ∧ dx̄ + dx ∧ Im θ ∧ dx̄ and the
last summand is real-valued: dx ∧ Im θ ∧ dx̄ = (−1)dx ∧ Im θ ∧ dx̄ = dx ∧ Im θ ∧ dx̄ .

Therefore (dϕ)(2,1) vanishes iff

4dv + dw = 2 ıKr ω̃1. (12)

Thus, the 2-form ϕ descends to a closed form on M0 = H∗
×S1

r
P if and only if the three equations are satisfied:

(8), (11) and (12). But the last equation follows from the first two. Indeed, since S1
r acts isometrically we have

0 = LKr

(
ıKr g̃

)
= ıKr d

(
ıKr g̃

)
+ d

(
ıKr ıKr g̃

)
which means ıKr d

(
ıKr g̃

)
= −dw. Now taking the operator ıKr of

both sides of Eq. (11) and using (8) we obtain Eq. (12).
It was first remarked in [14] that a hyperKähler manifold with an S1-action which preserves one complex structure

and permutes the other two has a Kähler potential. Since our conventions slightly differ we reproduce this simple
computation.

Let ρ̃ : M̃ → R be a momentum map of S1
r , i.e. a solution of the equation

dρ̃ = − ıKr ω̃1.

On the one hand we have d
(
I ∗

2 dρ̃
)

= d i
(
∂2 − ∂̄2

)
ρ̃ = −2i∂2∂̄2ρ̃. But on the other hand I ∗

2 ıKr ω̃1 = ıKr ω̃3 and
therefore −d

(
I ∗

2 dρ̃
)

= d
(
I ∗

2 ıKr ω̃1
)

= d
(
ıKr ω̃3

)
= LKr ω̃3 = 2ω̃2. Putting this together we obtain that ρ̃ satisfies

i∂2∂̄2ρ̃ = ω̃2

or, in other words, ρ̃ is a Kähler potential for ω̃2. It is clear that ρ̃ is also a Kähler potential for ω̃3 since these forms
are not distinguished by the S1

r -action. However ρ̃ need not be a Kähler potential for ω̃1.
Now if we remark that I ∗

1 dρ̃ = ıKr g̃ and consequently

−2i∂1∂̄1ρ̃ = d
(
ıKr g̃

)
,

then Eq. (11) can be written in a particularly nice form: Fξ = i∂1∂̄1ρ̃ − ω̃1, i.e. the function ρ̃ is a hyperKähler
potential iff Fξ = 0.
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Now we can find the function v (up to a constant) from Eq. (12) (or, equivalently, from (8)):

v = −
w + 2ρ̃

4
. (13)

Therefore the following theorem is essentially proven.

Theorem 3. Assume that the group S1
r act isometrically on a hyperKähler manifold M̃ such that (L z)

∗ ω̃ = zω̃z̄.
Let P → M̃ be an S1

0 -principal bundle with a connection ξ ∈ Ω1(P). Suppose also, that the function v defined by
formula (13) is everywhere positive, where w denotes squared norm of the Killing vector field Kr of S1

r , while ρ̃ is its
momentum map. Extend the action of S1

r to P such that it commutes with the action of S1
0 . Then (9) and (10) define

a hyperKähler structure on M0 = H(M̃) = H∗
×S1

r
P if and only if

Fξ = i ∂1∂̄1ρ̃ − ω̃1. (14)

Furthermore the left action of H∗ induces a transitive action on the 2-sphere of complex structures and therefore
H(M̃) has a hyperKähler potential

ρ = −
4v + w

2
|x |

2. (15)

Finally, for any hyperKähler manifold M with permuting action of H∗ and triholomorphic one of S1, the open
everywhere dense submanifold M0 = M \ µ−1(0) can be obtained asH(M̃), where M̃ is as above.

Proof. It remains to show that the symmetric tensor given by formula (9) provides a non-negative bilinear form at any
point of the tangent space to H∗

× P as well as to prove formula (15) for the hyperKähler potential.
First we have a decomposition T (H∗

× P) = T H ⊕ T P = T H ⊕ RK0 ⊕ π∗T M̃ . Further decompose T M̃ as
span(Kr , I1 Kr , I2 Kr , I3 Kr )⊕ E , where E denotes the orthogonal complement. Thus we have

T
(
H∗

× P
)

= T H ⊕ RK0 ⊕ π∗span (Kr , I1 Kr , I2 Kr , I3 Kr )⊕ π∗E,

and we can write a tangent vector as w = w∗
+ aK0 + βKr + v, where a is a real number and β is a quaternion.2 If

dx(w∗) = α ∈ H, then

g(w,w) = (4v + w)|α|
2
+ |x |

2
(

|β|
2
+ ‖v‖

2
+

a2

v

)
− 2Re (x̄αi (2a + wβ))

= 4v|α|
2
− 4aRe (x̄αi)+ |x |

2v−1a2
+ w

(
|α|

2
− 2Re (x̄αiβ)+ |βx |

2
)

+ |x |
2
‖v‖

2

=

∣∣∣∣2√
vαi −

ax
√
v

∣∣∣∣2 + w |αi − β x̄ |
2
+ |x |

2
‖v‖

2
≥ 0.

Further, it was shown in [5] that if a hyperKähler manifold M admits a permuting H∗-action, then the squared norm
of any Killing vector field generating this action is a hyperKähler potential (up to a constant3 −2). Now the permuting
action of H∗ onH(M̃) is induced by the left multiplication on the first component of H∗

× P . In particular, the Killing
vector field of R∗

⊂ H∗ is the vector field w∗ s.t. dx(w∗) = x . Its squared norm (multiplied by −1/2) with respect to
metric (9) is exactly the right-hand side of (15). �

Remark 4. It is easy to see that the hyperKähler reduction of H(M̃) by S1
0 is M̃ (certainly not a surprise in view

of Section 2.1). Thus the construction H(·) may be regarded as a kind of “hyperKähler induction”, i.e. an inverse
construction to the hyperKähler reduction.

2 Any tangent space of a hyperKähler manifold carries an action of H. In particular if β = β0 + β1i + β2 j + β3k ∈ H, we write βKr instead
of β0 Kr +

∑3
l=1 βl Il Kr for the sake of brevity.

3 The minus sign appears because of different sign convention in the definition of hyperKähler potential.
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Remark 5. From Eq. (14) we have that the Chern class of P is −
1

2π [ ω̃1]. It follows that 1
2π [ ω̃1] must represent an

integral cohomology class and in this case Eq. (14) does have a solution. Furthermore, any solution ξ is automatically
S1

r -invariant and the Killing vector field Y1 of S1
r -action on P satisfies Y1 = K̂r + 2vK0. Indeed, as we have seen the

right-hand side of Eq. (14) may be written in the form −
1
2 d
(
ıKr g̃

)
− ω̃1 and this immediately implies S1

r -invariancy
of ξ . Further, we may decompose Y1 on the horizontal and vertical parts: Y1 = K̂r + aK0. Then by Remark 1 we have
ıKr Fξ + da = 0. On the other hand Eq. (14) implies ıKr Fξ = −2dv and the statement follows.

It is worth pointing out that equality a = 2v holds only up to a constant. This phenomenon will be discussed in
details in Section 4. At this point we will ignore this subtlety implying that a constant is chosen properly, such that the
equation Y1 = K̂r + 2vK0 holds.

Remark 6. Suppose that the S1
r -action is induced by a permuting H∗-action (and standard inclusion S1

r ⊂ H∗), or
equivalently, the momentum map ρ̃ of the S1

r -action is not only Kähler potential but also hyperKähler [18]. It follows
from Eq. (14) that the bundle P is flat and we can take it to be trivial so that topologicallyH(M̃) = H∗

×M̃ . Moreover,
it follows from the proof of the theorem that v is constant so that we may put v = 1. This determines a metric and
symplectic forms.

Further, it turns out that in this case H(M̃) is isometric to H∗
× M̃ with its product metric. Indeed, direct

computation shows that the mapH(M̃) → H∗
× M̃, (x,m) 7→ (x, xm) is an isometry.

2.5. Quaternionic flip

In the previous section for any hyperKähler manifold M̃ with a certain S1-symmetry we have constructed another
hyperKähler manifold M0 = H(M̃) with hyperKähler potential. Then Swann’s results [18] imply that the manifold
N0 = M0/H∗

= P/S1
r is quaternionic Kähler. In this section we will describe its quaternionic Kähler structure.

First notice that in order to obtain quaternionic Kähler structure on N0 we have to consider a Riemannian version
of the quotient M0/H∗, that is to pick a level set of a hyperKähler potential and divide it by the group Sp(1); in this
case we may view complex structures of N0 as induced by those of M0 on span(Y0, Y1, Y2, Y3)

⊥
⊂ T M0.

Let us again return to the viewpoint of Section 2.1, i.e. P = µ−1(i) ⊂ M and let λ = (4v + w)−1/2. Since the
restriction of the hyperKähler potential ρ to P equals −(4v + w)/2, a map

l: p 7→ λ(p) · p = Lλ(p) p, p ∈ P, (16)

is a diffeomorphism between P and Q = ρ−1(−1/2) ∩ µ−1
c (0) ∩ {µ1 > 0}, where µc = µ2 + iµ3. Thus our next

aim is to compute the tensors g(pr ◦ l∗ ·, pr ◦ l∗ ·) and ω(pr ◦ l∗ ·, pr ◦ l∗ ·), where pr means a projection onto
span(Y0, Y1, Y2, Y3)

⊥.
First we may decompose a vector u ∈ Tp P ⊂ Tp M as u′

+
∑3

l=0 alYl . The coefficients al can be found from the
following relations:

a0g(Y0, Y0) = g(u, Y0) = g(u,−I1 K̂r − 2v I1 K0) = ω̃1(Kr , u),

a1g(Y1, Y1) = g(u, Y1) = g(u, K̂r + 2vK0) = 2ξ(u)+ g̃(Kr , u),

a2g(Y2, Y2) = g(u, Y2) = g(u, I3 K̂r + 2v I3 K0) = −ω̃3(Kr , u),

a3g(Y3, Y3) = g(u, Y3) = g(u,−I2 K̂r − 2v I2 K0) = ω̃2(Kr , u).

The expressions for al become more compact in quaternionic notations. Indeed, if we put a = a0+a1i+a2 j+a3k ∈ H
and recall the definition (6) of 1-form η, then

a =
1

4v + w
(2ξ(u)+ η̄(u)) i.

Since l∗ =
(
Lλ(p)

)
∗

+ dλ Y0(l(p)), we have pr l∗v =
(
Lλ(p)

)
∗

v′ and therefore

g (pr l∗u, pr l∗v) = g
((

Lλ(p)
)
∗

u′,
(
Lλ(p)

)
∗

v′
)

= λ2g
(
u′, v′

)
= λ2g (u − aY0, v − bY0)

= λ2 (g(u, v)− g(aY0, v)− g(u, bY0)+ g(aY0, bY0)) ,
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where we also put v = v′
+ bY0. Now it is easy to compute every single summand in the last expression. Indeed,

the first summand is given by formula (5). Taking into account the decompositions (7) one obtains g(aY0, v) =

−Re (ai (2ξ + η) (v)) = (4v+w)−1Re ((2ξ + η̄) (u) (2ξ + η) (v)). Since vectors Yl are pairwise orthogonal we get:
g(aY0, bY0) = (4v + w)Re

(
ab̄
)

= (4v + w)−1Re ((2ξ + η̄) (u) (2ξ + η) (v)). Finally, gathering all terms together,
one has after a simplification:

gN =
1

4v + w

(
g̃ +

1
v
ξ2

−
1

2(4v + w)
(2ξ + η̄)� (2ξ + η)

)
.

It is convenient to introduce a 1-form

ψ =
1

g(Y1, Y1)
g(Y1, ·) =

1
4v + w

(2ξ + ıKr g̃), (17)

which is a connection on the principal fibre bundle P → N0 (assuming that S1
r acts freely on P), i.e. it is S1

r -invariant
and ψ(Y1) = 1. Then the expression for the metric takes the following form:

gN =
1

4v + w

(
g̃ +

1
v
ξ2

−
1
2
ψ2
)

−
1

2(4v + w)2

3∑
l=1

(
ıKr ω̃l

)2
. (18)

Arguments similar to those at the beginning of Section 2.4 show that formula (18) defines a metric on N0.
The fundamental 4-form Ω can be obtained in the similar manner. Indeed,

χ(u, v) = ω(pr l∗u, pr l∗v)λ2ω(u − aY0, v − bY0)

= λ2 (ω (u, v)− ω (aY0, v)− ω(u, bY0)+ ω(aY0, bY0)) .

Arguing similarly as we did when computing the metric, we obtain finally that

χ =
1

4v + w
ω̃ −

1

2(4v + w)2
(2ξ + η̄) ∧ (2ξ + η) .

Componentwise spelling of this formula is

χ1 =
1

4v + w

(
ω̃1 − ψ ∧ ıKr ω̃1

)
+

1

(4v + w)2
ıKr ω̃2 ∧ ıKr ω̃3,

χ2 =
1

4v + w

(
ω̃2 − ψ ∧ ıKr ω̃2

)
−

1

(4v + w)2
ıKr ω̃1 ∧ ıKr ω̃3,

χ3 =
1

4v + w

(
ω̃3 − ψ ∧ ıKr ω̃3

)
+

1

(4v + w)2
ıKr ω̃1 ∧ ıKr ω̃2.

(19)

With respect to the action of S1
r on P all three forms χl ∈ Ω2(P) are basic, however only χ1 is invariant:

LY1χ1 =
1

(4v + w)2

(
−2 ıKr ω̃3 ∧ ıKr ω̃3 + ıKr ω̃2 ∧ 2 ıKr ω̃2

)
= 0,

LY1χ2 =
1

4v + w

(
−2ω̃3 + ψ ∧ 2 ıKr ω̃3

)
+

1

(4v + w)2
ıKr ω̃1 ∧ 2 ıKr ω̃2 = −2χ3,

LY1χ3 =
1

4v + w

(
2ω̃2 − ψ ∧ 2 ıKr ω̃2

)
−

1

(4v + w)2
ıKr ω̃1 ∧ 2 ıKr ω̃3 = 2χ2.

It follows that a 4-form

Ω = χ1 ∧ χ1 + χ2 ∧ χ2 + χ3 ∧ χ3 (20)

is basic and invariant and therefore descends to N0. Integrability of such defined quaternionic Kähler structure follows
from the integrability of the hyperKähler structure on M0 = H(M̃) = U(N0) [18].
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Theorem 7. Let the assumptions of Theorem 3 be satisfied. Then the metric (18) and the fundamental 4-form (20)
define a quaternionic Kähler structure on N0 = Q(M̃) = P/S1

r , where χl and ψ are defined by (19) and (17)
respectively. Moreover Q(M̃) admits a quaternionic Kähler action of S1 and its Swann bundle U(N0) isH(M̃). �

3. Examples

Example 8 (T ∗CPn with the Calabi Metric). The hyperKähler quotient of Hn+1 by S1 acting by multiplication on
the left with respect to nonzero value of the momentum map is topologically T ∗CPn . Hitchin [12] showed that
the metric coincides with the one defined by Calabi [6]. Therefore H(T ∗CPn) = Hn+1 with its flat metric and
Q(T ∗CPn) = HPn (in both cases with zero level set of corresponding momentum map being removed).

Example 9 (Flat Manifold, Adjoint Action). Let us take a copy of quaternions Hy as a manifold M̃ with the following
action of S1

r : (z, y) 7→ zyz̄ (one can also regard H as T ∗C with fibrewise action of S1
r ; see also Remark 10). In this

case 1/4(w+2ρ̃) = 1/2(y2
2 + y2

3), where y = y0 + y1i + y2 j + y3k. Adding 1/2 we may write function v in the form

v =
1
2
(1 − y2

2 − y2
3)

and it is positive on R2
y0 y1

× D2
y2 y3

, where D2
⊂ R2 is an open disc of radius 1. The principal bundle P is trivial and

therefore Q(R2
× D2) = R2

× D2 with the following metric:

gN =
1

2(1 + d)

(
1 − d

1 + d
Re dy ⊗ d ȳ +

4d

1 − d2 (y0dy1 + y3dy2)
2

−
1

1 + d
(y0dy1 + y3dy2)� (y2dy3 − y3dy2)

)
,

where d = y2
2 + y2

3 . Therefore the above metric is Einstein and self-dual. However it is incomplete.
Similarly, one can compute the metric and symplectic forms on H(R2

× D2) = H∗
× R2

× D2 but the metric is
also incomplete.

Remark 10. The above manifolds are examples of a large class of hyperKähler manifolds admitting S1
r -action.

Namely Kaledin [15] and independently Feix [7] proved the existence of a hyperKähler metric on a (neighborhood of
the zero section of) cotangent bundle T ∗M to a real-analytic Kähler manifoldM. The above examples show that the
function v can be both positive everywhere and only on a proper open subset of T ∗M.

Example 11 (The Gibbons–Hawking Spaces). All hyperKähler four-manifolds with S1-symmetry were described by
Gibbons and Hawking [10] and their construction is as follows. If Z4 is hyperKähler and admits S1-symmetry with a
Killing vector field K0, then its hyperKähler momentum map µ = µ1i + µ2 j + µ3k represents Z as a fibration over
R3 with generic fibre S1, so that, excluding the critical points of the momentum map, one can write the metric as

gGH = ν
(

dx2
1 + dx2

2 + dx2
3

)
+ ν−1ξ2, xl = µl , l = 1, 2, 3, (21)

where ν : R3
→ R>0, ν

−1
= ‖K0‖

2, and ξ is a connection form. It is then an easy exercise to write down 2-forms
which are closed provided

Fξ = − ∗ dν. (22)

It follows from the Bianchi identity that ν is harmonic. We would like to point out that Z4 is determined by the
function ν (harmonic and positive) since the connection ξ can be found from Eq. (22). The Gibbons–Hawking ansatz
is a choice of a particular function ν:

ν(x) =

n∑
i=1

1
|x − yi |

, yi ∈ R3.

In general the above four-manifold does not admit an S1
r -action. However when all the poles yi of the function ν lie

on one line (say x1-axis), then such action does exist; its projection to R3 ∼= Im H is then (z, x) 7→ zx z̄, x ∈ Im H. A
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direct (and tedious) computation shows that the function v is positive everywhere and therefore the constructionH(Z)
is defined on the whole Gibbons–Hawking space Z . Alternatively, one can observe [8] that the Gibbons–Hawking
spaces can be obtained as hyperKähler reductions of a flat space acted upon by a torus with respect to a nonzero value
of the corresponding momentum map, i.e. Gibbons–Hawking spaces are examples of toric hyperKähler manifolds [4].
Therefore, if the value of the momentum map is chosen properly, the action of S1

r can be obtained from the
corresponding action on the flat space. In this case one can also show that the manifoldH(Z) is also toric.

4. Indeterminacy of function v: Further examples

As we have seen in Section 2.4 the function v is defined by formula (13) only up to a constant and this has strong
consequences as we will see below. Recall that the action of S1

r should be lifted from M̃ to P such that its Killing
vector field Y1 equals K̂r + 2vK0 (see (7)). This implies that we are free to take ṽ = v + m/2 instead of v, where m
is an integer, whenever v + m/2 remains everywhere positive. However in this case one needs to modify the lifting
of the S1

r -action to P to get that the Killing vector field is given by K̂r + 2ṽK0. Therefore we get that the manifolds
H∗

×S1
r

P and P/S1
r again carry hyperKähler and quaternionic Kähler structures correspondingly, where the modified

action of S1
r is implied. It turns out that the modification of the S1

r -action can change the topology of the H and Q
constructions.

In the rest of this section we carry out the above observation in detail for the case of cotangent bundle of a complex
Grassmannian. HyperKähler metrics on cotangent bundles of Grassmannians with required symmetries were obtained
long ago (see [8] and references therein). More generally, Nakajima [16] constructed such metrics on cotangent
bundles of quiver varieties, however we shall consider only Grassmannians for the sake of simplicity. First we review
construction of hyperKähler structure on T ∗Grk(Cn) and then illustrate the impact of the modification of S1

r -action.
Choose the left quaternionic structure on the flat space Mn,k(H) consisting of matrices with n rows and k columns.

We have

g(A1, A2) = Re tr(A1 Āt
2), ω(A1, A2) = Im tr(A1 Āt

2).

The group U (k) acts on Mn,k(H) by multiplication on the right. Write A = B + C t j , where B ∈ Mn,k(C) and
C ∈ Mk,n(C). Then the hyperKähler momentum map µ = µRi + µC j is given by

µR(B,C) =
1
2

(
B̄t B − CC̄ t) , µC(B,C) = −C B.

Probably the easiest way to see that the hyperKähler reduction of Mn,k(H) is isomorphic to T ∗Grk(Cn) is to
observe [16] that

µ−1(i) /U (k) ∼= {(B,C) ∈ Mn,k(C)× Mk,n(C) | rk B = k, BC = 0}/GLk(C), (23)

where GLk(C) acts on pairs of matrices as follows: (B,C) · g = (Bg, g−1C). Think about B as a k-frame in Cn .
Then {B|rkB = k}/GLk(C) = Grk(Cn) and it follows that the right-hand side of (23) is S ⊗ Q∨, where S and Q
denote the tautological and quotient vector bundles over Grk(Cn) respectively. Recalling that T Grk(Cn) ∼= S∨

⊗ Q
we get the result.

The action of S1
r , inherited from the permuting action of H∗ on Mn,k(H), is the following one4: z · [B,C] =

[zB, zC]. For such action the function v defined by (13) must be positive everywhere on T ∗Grk(Cn). Indeed,
this follows from the following observation. The space Mn,k///µ=iU (k) can be obtained in two steps: first
consider Mn,k///µ=0SU (k) and then take its hyperKähler reduction with respect to S1

⊂ U (k). Since the space
Mn,k///µ=0SU (k) inherits permuting action of H∗, the statement follows. Notice also that the corresponding S1-

principal bundle P = µ−1
S1 (i) ⊂ Mn,k///µ=0SU (k) is pull-back of the principal bundle of ΛtopS.

Take ṽ = v+m/2 instead of v, where m is a positive integer. Then the modified action of S1
r on µ−1(i) is given by

z · (B,C) = (Bzm+1, z1−mC). (24)

Before proceeding we need the following lemma.

4 Notice that this action is different from the one considered by Nakajima in [16].



304 A. Haydys / Journal of Geometry and Physics 58 (2008) 293–306

Lemma 12. Let P → X be an S1-principal bundle and L → X be the corresponding line bundle. Consider the
following action of S1 on P × C : z · (p, w) = (pzr , zsw), where r and s are integers and r is positive. Then

(P × C)/S1 ∼= L−s .

Proof. Let Qr,s denote the space P × C with the action of S1 as in the statement of the lemma. Then we have an
equivariant map Qr,s → Qr,rs, (p, w) 7→ (p, wr ). Clearly it is surjective; although it is not injective, it descends to
a bijective map of quotients Qr,s/S1

→ Qr,rs/S1. But the last quotient is exactly L−s . �

Therefore the action (24) can be replaced by the following one

z · (B,C) = (Bz, z−1Cz2−m).

This action is induced by the inclusion S1
⊂ U (k) followed by the action of U (k)

(B,C) · g = (Bg, g−1C(det g)−s),

provided m = ks + 2, s ∈ Z. If L denotes the top exterior power of the tautological bundle of Grk(Cn), then we get

µ−1
S1 (i)/S1

r
∼= µ−1(i)/U (k) ∼= Ls

⊗ T ∗Grk(Cn).

Thus, summing up we get the following result.

Theorem 13. The total space of Ls
⊗ T ∗Grk(Cn), s ∈ Z, ks + 2 ≥ 0 carries a quaternionic Kähler structure

with positive scalar curvature. Its Swann bundle is the total space of
(
L ⊕ L−1

)
0 ⊕ Ls

⊗ T ∗Grk(Cn), where the
index 0 indicates that the image of the zero section is removed. �

In the case of k = 1, n = 2 one obtains quaternionic Kähler structures on total spaces ofOP1(−s −2) = OP1(−m)
for m ≥ 0, which is certainly diffeomorphic to OP1(m). These spaces were obtained by Galicki and Lawson [9] as
open subsets of four-dimensional quaternionic Kähler orbifolds.

5. Kähler structure on N0

In contrast to a hyperKähler manifold, almost complex structures of a quaternionic Kähler manifold N are defined
only locally, i.e. we have a distinguished rank 3 subbundle I ⊂ End(T N ) called a structure bundle, which locally
admits a basis consisting of three almost complex structures with quaternionic relations. Since the metric induces an
isomorphism T N ∼= T ∗N , one gets an embedding of I in Λ2T ∗N . Locally this is given by passing from an almost
complex structure I to the associated 2-form ωI (·, ·) = g(·, I ·). We will not distinguish between I and its image in
Λ2T ∗N . An analogue of a momentum map can be defined in the quaternionic Kähler context, but now it will be a
section of a structure bundle (see [8] for details).

Theorem 14. Let N be a quaternionic Kähler manifold of positive scalar curvature. Suppose also that N admits a
quaternionic Kähler action of S1 with momentum section µN ∈ Γ (I). Then N0 = N \{µN = 0} is a Kähler manifold.

Proof. Let M be the Swann bundle of N . Then M admits a hyperKähler action of S1 [18]. Let µ = µ1i + µc j :

M → Im H be its momentum map. Since the function µc : M → C is I1-holomorphic, the subvariety Mc = {m ∈

M : µc(m) = 0} has an induced Kähler structure. Further, M+
c = {m ∈ Mc : µ1(m) > 0} is an open submanifold of

Mc. The group S1
r preserves I1 and one may consider the Kähler reduction of M+

c with respect to a nonzero value of
the momentum map: M+

c //S1
r

∼= M+
c /C∗

r . It remains to observe that M+
c = µ−1(i)× R>0 = P × R>0 and therefore

M+
c /C∗

r
∼= P/S1

r
∼= N0. �

When a quaternionic Kähler manifold N admits an action of S1, one can normalize the momentum section
µN ∈ Γ (I) and consider it as an almost complex structure Î over N0. It turns out that Î is integrable [2,17] and
it is easy to see from the proof that it coincides with the complex structure implied by Theorem 14 (our proof of
the above theorem itself represents an alternative proof of the integrability of Î in case when N has positive scalar
curvature). Although the complex structure Î is a section of the structure bundle I, the Kähler metric of N0 must
not coincide with the quaternionic Kähler one as we will see in what follows. Note also that I does not admit a
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section which defines an integrable complex structure on the whole manifold N (see [1] for extensive discussion of
this phenomenon). Taking this into account, one may consider N0 as “the largest” open submanifold of N where it is
still possible to choose an integrable complex structure. Our next aim is to express the Kähler structure of N0 similarly
to the quaternionic Kähler one (see Section 2.5).

Recall that N0 ∼= P/S1
r = M+

c /C∗
r . In order to get a metric and Kähler form on N0 we have to express N0 as a

Kähler reduction, i.e. we have to fix a level set of momentum map and divide it by S1
r ⊂ C∗

r . In our case the momentum
map of the S1

r -action is nothing else but the hyperKähler potential ρ (restricted to M+
c ). Recall also that we have an

isomorphism (16) between P and Q = ρ−1(−1/2) ∩ M+
c . Further, one has T. Mc = span(I2 K0, I3 K0)

⊥
⊂ T. M

and T. ρ
−1(−1/2) = span(Y0)

⊥. It follows that T. Q = span(I2 K0, I3 K0, Y0)
⊥ because Y0 is perpendicular to both

I2 K0 and I3 K0 (see (7)). In particular Y1 ∈ T Q; this also follows from the fact that S1
r preserves Q. Further, the

Kähler reduction procedure implies that T. N0 is identified with span(Y1)
⊥

⊂ T. Q and the Kähler form and metric
are obtained as a restriction of the corresponding tensors to span(Y1)

⊥. Remark that the quaternionic Kähler metric
was obtained as the one induced on a different subbundle, namely on span(Y1, Y2, Y3)

⊥
⊂ T Q.

Let u ∈ Tp P . Then we may decompose u = u′
+ ψ(u)Y1, where u′ is orthogonal to Y1. Now denote by Π an

orthogonal projector on span(Y1)
⊥ in T Q. Then for the Kähler metric ĝN we have:

ĝN(u, v) = g (Π l∗u,Π l∗v)

= g
((

Lλ(p)
)
∗

u′
+ dλ(u)Y0(λ(p)p),

(
Lλ(p)

)
∗

v′
+ dλ(v)Y0(λ(p)p)

)
= λ2g (u − ψ(u)Y1 + dλ(u)Y0, v − ψ(v)Y1 + dλ(v)Y0)

= λ2 (g (u, v)− ψ(u)g (Y1, v)− ψ(v)g (Y1, u)+ dλ (u) g (Y0, v) dλ (v) g (Y0, u)) .

As we already know g (u, v) =
(
g̃ + v−1ξ2

)
(u, v). By the definition of ψ one has g(Y1, v) = (4v +

w)ψ(v). Further, g(Y0, v) = g
(
−I1 Kr − 2v I1 K0, v̂ + ξ(v)K0

)
= ıKr ω̃1(v). Therefore we obtain ĝN =

λ2
(
g̃ + v−1ξ2

− (4v + w)ψ2
+ dλ� ıKr ω̃1

)
. Since dλ = (4v + w)−3/2 ıKr ω̃1 we may finally write

ĝN =
1

4v + w
g̃ +

1
v(4v + w)

ξ2
− ψ2

+
1

(4v + w)5/2

(
ıKr ω̃1

)2
.

The Kähler form ω̂N may be obtained in a similar manner. Indeed,

ω̂N (u, v) = ω1(Π l∗u,Π l∗v)

= ω1
((

Lλ(p)
)
∗

u′
+ dλ(u)Y0 (l(p)) ,

(
Lλ(p)

)
∗

v′
+ dλ(v)Y0 (l(p))

)
= ω1

((
Lλ(p)

)
∗

u′,
(
Lλ(p)

)
∗

v′
)

= λ2ω1 (u − ψ(u)Y1, v − ψ(v)Y1) .

Since ω1(u, v) = ω̃1(u, v) and ω1(Y1, u) = g(K̂r + 2vK0, I1û + ξ(u)I1 K0) = ıKr ω̃1(u), we obtain the Kähler form
as

ω̂N =
1

4v + w

(
ω̃1 − ψ ∧ ıKr ω̃1

)
.

Remark 15. As we have already remarked, we may regard the form ψ as a connection on the S1
r -principal bundle

P → N0. Let us compute its curvature. We have

Fψ = −
1

(4v + w)2
(4dv + dw) ∧ (2ξ + ıKr g̃)+

1
4v + w

(
2dξ + d ıKr g̃

)
.

It follows from Eqs. (11) and (12) that

Fψ = −
2

4v + w

(
ıKr ω̃1 ∧ ψ + ω̃1

)
= −2ω̂N .

This observation provides an “intrinsic” interpretation of the Kähler form ω̂N in the following sense. Let N be a
quaternionic Kähler manifold with positive scalar curvature and F → N be the principal SO(3) bundle associated
to the structure bundle I. Observe that F is equipped with the natural connection induced by the Levi-Civita one.
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Suppose also that N admits a quaternionic Kähler action of the circle and denote by µN its momentum section. As it
was explained above one can think about µN on N0 = N \ {µN = 0} as a section of F (restricted to N0). This means
that we get S1-subbundle Q of F . The curvature of the induced connection ψ is a −1/2-multiple of the Kähler form
ω̂N .
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